lnec

Scalable Backside-Illuminated Charge-Focusing Silicon SPADs with Enhanced Near-Infrared Sensitivity

Edward Van Sieleghem^{1,2,3}, Gauri Karve¹, Koen De Munck¹, Chris Van Hoof^{1,2}, Jiwon Lee¹

¹Imec, Leuven, Belgium ²KU Leuven, Belgium ³now with Gpixel, Antwerp, Belgium

June 2022

Contents

Motivation

- Proof-of-concept charge-focusing SPAD
- Intermezzo: Simulation methodology
- Scaled charge-focusing SPADs
- Conclusion & outlook

ເງຍ

Direct time-of-flight (d-ToF)

- Temporally resolve faint scattered signals from a 3D scene
- Benefits from:
 - SPADs in large arrays
 - NIR sensitivity
 - Reduced ambient light
 - Improved eye safety
 - Fog & rain penetration
 - High dynamic range
 - Faint signal
 - Strong background
 - Good timing resolution
 - Silicon

ເກາຍc

Scalable NIR-sensitive silicon SPADs

The detector requirements are determined by the application:

- Deep epi layer
 - NIR ½ silicon
- Full depleted / Drift field
 - No compromise on jitter
- Scalable / High fill factor
 - Array integration
 - Macro cells
- Optics enhancing features

Could resemble...

FTI

Field engineering

- How to go from (d-ToF) performance requirements to actual devices? Doping & field engineering
- **Notably: Charge focusing**
 - Electrons funneled into multiplication field
 - \Rightarrow High fill factor & PDE
 - \Rightarrow Scalable
 - Small multiplication region
 - \Rightarrow Low DCR
 - \Rightarrow Low afterpulsing
 - \Rightarrow Low junction cap.

K. Morimoto, et al. (Canon)

Field engineering

Other examples of field engineering:

S. Shimada et al. (Sony)

A fine balance between breakdown and depletion

G. Jegannathan et al. (VUB)

A charge-focusing technique with the assistance of a current

ເກາຍດ

A note on depletion and breakdown

Wide depletion region

=> Potential spreads over large distance
=> Field strength is insensitive to bias

Consequences:

- Large operating voltage ⇔ Strong drift field
- High excess bias $V_e \Leftrightarrow$ High breakdown probability
- Increased process sensitivity
- Poor temperature coefficient

ເງຍອ

- Motivation
- Proof-of-concept charge-focusing SPAD
- Intermezzo: Simulation methodology
- Scaled charge-focusing SPADs
- Conclusion & outlook

Proof-of-concept BSI device

• Goal:

- High-performing sensor for d-ToF...
- ...by exploiting charge-focusing effect

Features:

- Silicon
- Small spherical cathode
 => Field-line crowding
- I0-µm-deep intrinsic epi
 => NIR sensitivity

BSI

ເກາຍດ

3x3 SPAD array

A'

ARC

Carrier

BEOL

Epi

Electric field

- Spherically-uniform multiplication field around cathode due to field-line crowding
- Charge-focusing drift field in epi
- The field reduced on top interface

ເງຍ

Electric field

Charge-focusing effect

- Most carriers are funnelled through multiplication field
- High PDE
- Scalable

Multiplication field remains 'sensitive to applied bias'

- \Rightarrow Low excess bias required
- \Rightarrow Low process sensitivity
- \Rightarrow 33 mV/K temp. coeff.

Performance (measured)

10⁻³

10

91

Performance – NIR sensitive SPADs

	This work [1]	Shimada [2]	Morimoto [3]	Gullinatti [4]	Jegannathan [5]
Technology	BSI 130 nm	BSI 90 nm	BSI 90 nm	FSI	FSI 350 nm
Size	I5 μm	6 µm	6.39 μm	50 µm	30 µm
Depth	I0.4 μm	7 µm	6 µm	10 μm	I4 μm
$V_{bd} + V_e$	67.4 + 3.5 V	22 + 3 V	30 + 2.5 V	30 + 20 V	49 + 2.5 V
PDE @ 905 nm	27%	33%	28%	20%	~25%
DCR @ 300K	640 Hz	l9 Hz	I.8 Hz	3300 Hz	8 × 10 ⁶ Hz
Timing FWHM	240 ps	137 ps	100 ps	95 ps	200 ps
Afterpulsing	<0.1%	<0.1%	-	2%	14%
Crosstalk	34%	0.5 %	-	0.2%	-

13

Proof-of-concept already performs well, but can be improved:

- I. Technology: DTI, microlenses, metal reflector, scattering features [2,3]
 - PDE ↑ and crosstalk ↓
- 2. Scaling
 - Pitch \downarrow and $V_{bd} \downarrow$

[1] E. Van Sieleghem, et al., IEEE Transactions on Electron Devices, vol. 69, no. 3, pp. 1129–1136, 2022.
[2] S. Shimada, et al., in *IEEE International Electron Devices Meeting (IEDM)*, 2021, pp. 446–449.
[3] K. Morimoto, et al., in *IEEE International Electron Devices Meeting (IEDM)*, 2021, pp. 450–453.
[4] A. Gulinatti, et al., *Optics Express*, vol. 29, no. 3, pp. 4559–4581, 2021.
[5] G. Jegannathan, et al., in *Silicon Photonics XVII. SPIE*, 2022, vol. 12006, pp. p. 40–46.

ເງຍ

- Motivation
- Proof-of-concept charge-focusing SPAD
- Intermezzo: Simulation methodology
- Scaled charge-focusing SPADs
- Conclusion & outlook

Simulation methodology

How to accurately estimate SPAD performance?

- I. Stochastically simulate single-carrier dynamics
- 2. Combine behaviour of many individual carriers

- Motivation
- Proof-of-concept charge-focusing SPAD
- Intermezzo: Simulation methodology
- Scaled charge-focusing SPADs
- Conclusion & outlook

Scaled device design

• CF SPAD is inherently scalable!

Two design variants tested

Features

- Pitch 6 µm
- Depth 6 µm
- Reduced cathode radius
- DTI
- 'P-enrichment' (Optional)
- No microlens or scattering layer yet

Electric field

Overall: Similar field & breakdown behaviour to 15 µm proof of concept

ເກາຍດ

Performance (simulated)

19

Reminder: No microlens or scattering layer yet!

ເງຍ

Absorption volume extension

Doping gradient provides drift field in regions that would otherwise be neutral

ເງຍອ

 $[\dots]^*$ With an extended absorption volume and tuned doping gradient. [†]Without optical microlenses (84% DTI fill factor) and without light trapping.

Where does the scaling end?

The application sets the trade-off...

ເງຍອ

- Motivation
- Proof-of-concept charge-focusing SPAD
- Intermezzo: Simulation methodology
- Scaled charge-focusing SPADs
- Conclusion & outlook

Conclusion & Outlook

 SPADs are becoming an important technology for d-ToF LIDAR applications, but array integration w/ high PDE remains challenging

Our solution: Charge focusing BSI SPADs

- State-of-the-art PDE
- Scalable, low excess bias, good timing resolution, ...

Future work

- Improve performance through scaling (V_{bd}, noise, ...)
- Dense array integration w/ deep trench isolation

KU LEUVEN

ARENBERG DOCTORAL SCHOOL Faculty of Engineering Science

embracing a better life

Near-Infrared Enhanced Silicon Single-Photon Avalanche Diodes for Direct Time-of-Flight Applications

Edward Van Sieleghem

Supervisor: Prof. dr. Chris Van Hoof Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Engineering Science (PhD): Electrical Engineering

June 2022